
RSA NetWitness Using the REST API January 16, 2017

1 RSA NetWitness REST API Lab Guide | RSA NetWitness Using the REST API

RSA NetWitness Using the REST API

Before You Begin Objectives

Requirements

This lab exercise guide is intended to be used in
conjunction with the RSA University virtual lab
(“eLab”) environment.

If you have not already done so, please view the
document “Accessing RSA University Virtual
Labs”, which is available on the content page of
the RSA University site:
https://community.rsa.com/community/training
/content

Problems/Questions?
If you have any problems or questions, please
email: rsauniversity@rsa.com

Additional Resources:
RSA University on YouTube:
https://www.youtube.com/watch?v=EbyW

W2aMz88

NetWitness Logs and Packets Documentation:
https://sadocs.emc.com/

NetWitness Courses:
https://community.rsa.com/community/tra
ining/overview

At the end of this lab exercise, you should be able to:

• Use the NetWitness Web GUI to find metrics

• Perform REST queries from within a browser

• Use curl to automate REST calls to the backend

• Use Python scripts to programmatically set and/or get metrics
over time

• Find metrics of interest within NetWitness Logs and Packets

• Secure the use of REST by using SSL/HTTPS and best practices

• Use includes in your scripts to query several Packet Decoders
or appliances of the same type

Resources

As you complete these exercises, you can make use of the
following resources. These resources appear under the Resources
tab in the eLearning module:

• This lab guide

• Sample Python script that you can upgrade to HTTPS

Note
As you work through this lab exercise, there are times when you
may need to troubleshoot issues that arise. You can always refer to
the product documentation to verify settings and to troubleshoot.
Remember that you still have access to the internet from your local
computer if you need other assistance as you progress.

https://community.rsa.com/community/training/content
https://community.rsa.com/community/training/content
mailto:rsauniversity@rsa.com
https://www.youtube.com/watch?v=EbyWW2aMz88
https://www.youtube.com/watch?v=EbyWW2aMz88
https://sadocs.emc.com/
https://community.rsa.com/community/training/overview
https://community.rsa.com/community/training/overview

January 16, 2017 [<RSA ELAB TITLE>]

2 RSA NetWitness REST API Lab Guide | RSA NetWitness Using the REST API

Exercise 1: Work with the Classroom Environment

Objectives:

 Get familiar with the virtual environment which houses all the workstations, appliances, user
interfaces, and classroom files that you will need to interact with to complete the lab.

 Understand how to navigate Skytap

 Pull up your workstation and log into the NetWitness Web UI

 Note that you will be working from a different Workstation later in the lab (not the jumphost)
Goal: Access the eLab environment, navigate and view the 14 appliances including your Workstations
Getting Started:

1. Access the environment by clicking the link that was provided to you for the On-Demand Lab.

2. Start the machines: Click the black right-arrow “Play button” at the top of the screen to start all the

machines in this environment (instead of having to start one and then wait to start the next one). –

see image below.

WARNING: WAIT 3-5 Minutes for all of the virtual machines to fully boot! If one of them still

says “Busy” the lab will fail. – Perfect time for a coffee or tea break.

Scrolling up and down will reveal that you have 14 machines in your environment. Caution: The

machines will auto-suspend after 30 minutes of inactivity. If so, refresh your browser to enable the

Global Play button and re-start them by clicking the Global Play button (shown above).

3. Enter your Windows workstation: Once all of the VMs/boxes are running (green), click the machine

entitled “jumphost.” You are now looking at your Window Workstation. Notice that, at the top of

the Desktop screen there is a Skytap toolbar that you can hide with the Up-arrow and show with

the Down-arrow

4. To navigate to the Linux Workstation (different VM/box in the Skytap environment): On the Skytap

toolbar, Click the multi-monitor icon on the left to see all the machines in your environment at any

time (you may need to scroll up and down to see all of them).

Your Environment Details:

Important Note: Your environment will suspend itself after ½ hour of inactivity. If you plan on being

inactive, it is best to press the Global Stop button (shown below) and restart them when needed.

RSA NetWitness Using the REST API January 16, 2017

3 RSA NetWitness REST API Lab Guide | RSA NetWitness Using the REST API

When you click the “Global” play button (top right of your screen) wait for 5 minutes for all machines turn

green and fully boot up. If the “Spinney Wheel” continues, try clicking the browser refresh button. Again,

use the Global Start or Stop button (not each machine’s Play/Stop button one-by-one)

HINT: Remember this - If the environment seems to not be working, click the Recycle/Reload this page

button in the browser

Passwords

All REST API usernames/passwords admin/netwitness

NetWitness web interface GUI (SA Server –browser) user/pw admin/netwitness

Linux box username/password root/Adm1npass!

Appliances:

 Domain Controller - Windows (10.101.240.38)
 Security Analytics/Reporting Engine - Linux (10.101.240.44)
 PacketDecoder - Linux (10.101.240.39)
 packetdecoder2 - Linux (10.101.240.29)
 Packetdecoder3 – Linux(10.101.240.19)
 Log Decoder - Linux (10.101.240.40)
 Packet Concentrator - Linux (10.101.240.45)
 Log Concentrator – Linux (10.101.240.41)
 Broker (10.101.240.46)
 Remote Log Collector – Linux (10.101.240.43)
 Archiver – Linux (10.101.240.37)
 ESA – Linux (10.101.240.36)

REST Ports:
Log Collector: 50101
Log Decoder: 50102
Broker: 50103
Packet Decoder: 50104
Concentrator: 50105
Appliance: 50106
Archiver: 50108
SA Server/Reporting Engine - ESA None

Student files containing code that you will need are located here: For Windows workstation (Jumphost):

C:\Classroom Files__REST_API_Lab_Environment_IPs_Ports_Etc\myLabEnvironmentAndCommands.rtf

January 16, 2017 [<RSA ELAB TITLE>]

4 RSA NetWitness REST API Lab Guide | RSA NetWitness Using the REST API

For Redhat workstation: Desktop/ClassroomFiles/myLabEnvironmentAndCommands.txt (right-click and

open with “Emacs Text Editor”)

Exercise 2: Review of Metrics from with the NetWitness GUI

Objectives:

 Work with the NetWitness Web GUI

 Navigate the Explore View of different appliance types

 Access the REST API visual GUI and compare with the Explore View of the NetWitness GUI

 Identify metrics of the NetWitness product that may be of interest

Goal: Navigate metrics within the GUI by going into the System Stats page of a Packet Decoder. Add a stat

as a meter, view a historical chart, and expand and view the stat details. Compare Explore View of the

Packet Decoder to the REST GUI.

As someone who is very familiar with the NetWitness product, some initial steps may seem basic to you

but the reasons for doing them (to better understand REST) will become apparent as you proceed.

REST is used in order to access and potentially change metrics within the core services of NetWitness, but

first, it is important to understand what some of these metrics are and when it may make sense to just

access them with the GUI.

1. After all the VMs are running (green), click the one called jumphost. This is your Windows
workstation desktop and serves as the machine that you would conduct your daily activities on at
work.

2. Double-click the Chrome shortcut on the Desktop entitled “RSA Security Analytics Login” and login
using the default NetWitness credentials (admin: netwitness) If needed, wait 3-5 minutes and
reload to give the environment a chance to fully start up. Also, if it says “unsecure” just click
through that to proceed.

3. Within the Netwitness GUI, click the Main Menu->Administration->Health & Wellness
Be aware that there are three Packet Decoders in this environment.

4. Click on the System Stats Browser tab.
Notice that you can find and view various metrics in the system here.

5. Click the Component drop-down menu and select the option entitled Decoder. Then click the
Apply button.
Notice on the left column that you are looking at metrics for “packetdecoder3.” At the bottom of

the page, you could sift through metrics of the other decoders by viewing pages 2 of 5, 3 of 5 and

so on.

6. Toward the right side of the page, click one of the chart icons to see a historical visualization of any
one of the metrics. Because this is a tutorial environment, many of the charts are static. Notice
that you can drag and drop a section of the chart to manipulate the time range viewed and that

RSA NetWitness Using the REST API January 16, 2017

5 RSA NetWitness REST API Lab Guide | RSA NetWitness Using the REST API

you can hover over a point in time on the line or curve to get a value for that particular point in
time.

7. Click the x to close that chart.

8. Select the statistic at the very top of the page entitled Assembler packet Bytes.

9. All the way to the right, click the Stat Details button to expand the details.
You can view details about this particular metric.

10. Click the Services tab. Select the Packet Decoder entitled PacketDecoder

11. Click the Gear icon on the right and choose View Stats.
Here are some Key Stats for this particular Packet Decoder as well as some Service System

Information and Host System Information.

12. All the way on the right side of the screen click the Charts Stats Tray to expand it.

13. Click on the Assembler Packets stat and then Drag and drop it on the Gauges area.
Notice that it added this particular statistic as a gauge. Notice the Timeline Charts toward the

bottom of the page. Stats can be dragged and dropped here as well.

14. Scroll down and notice that there is also a section for Historical Timeline Charts.

15. Now that you have viewed several statistics and metrics within the GUI go back to Services. This
time, select the PacketDecoder and the Gear icon, but go to View Explore.

16. Resize the GUI’s browser window to make it smaller. Open a NEW browser window (in the system
tray, right-click the browser icon, and choose new window). Line up the browser windows as shown
in the graphic below.

January 16, 2017 [<RSA ELAB TITLE>]

6 RSA NetWitness REST API Lab Guide | RSA NetWitness Using the REST API

Exercise 3: Compare Explore with REST and Navigate the REST GUI

Objectives:

 Work with the NetWitness Web GUI

 Work with the REST GUI (in a browser)

 Compare the REST API visual GUI with the Explore View of the NetWitness GUI

 Navigate node paths and Identify metrics of the NetWitness product that may be of interest

Goal: Become familiar with the hierarchy of REST information and ways to access it

Now that you have opened a new Browser window (not a new tab), make a REST call to that same Packet

Decoder appliance by typing its IP Address and then the REST port for packet decoders.

1. Type 10.101.240.39:50104 and then press Enter.

2. Enter the default REST username and password of admin and netwitness

Congratulations on making your first REST call! This time using the REST API GUI which is a browser.

Notice that the directory structure of the Explore View (on the left) and the REST tree and nodes (on the

right) are the same. They both have the same directory/tree structure, the same subdirectories/nodes,

and the same parameters and values under each.

3. On the left Window (Explore view), in the left pane, click on database. The pane on the right of

that same window now displays config and stats. Hover over stats and read the description of “A

container node for other node types”. Now double-click stats and notice all the parameters on the

left and their corresponding values on the right.

Service (such as Decoder)
Has a Tree (directory of Nodes)
 Has Nodes (such as stats and possibly SubNodes)

Has Messages (such as get, Info, Help) – each is a method or function
 Has Parameters (such as capture.rate)
 Has a Value (such as 0)

4. On the left pane, again, click database. But this time, on the right pane, right-click on stats and

then click the Properties button.

5. Notice how this brings up a Properties box. Click the down-arrow to open the drop-down menu.

Select the info method. Notice how the Message Help box tells you what the info method does.

Click the Send button and then notice that the Response Output box displays info about the stats

node. Now click the down-arrow and select the Help option. Click Send. The output displays

things such as the data type and list of supported messages.

RSA NetWitness Using the REST API January 16, 2017

7 RSA NetWitness REST API Lab Guide | RSA NetWitness Using the REST API

Exercise 4: Use REST GUI to build a URL

Objectives:

 Note how the breadcrumbs (queries) from within the NetWitness Web GUI in the Explore View are
the basis for the URL strings that you will use within the REST GUI (in a browser)

 Use the REST Properties box to build a URL string for you that you can then use in a browser

 Change the URL string to query different nodes and different parameters

Goal: Become familiar with the URL string and how it relates to the query path

Change your focus to the browser window on the right that is displaying the REST GUI.

1. Click database. Now click stats. These are the same parameters and values that you saw earlier. In

the upper-left, click the .. (dot dot) to navigate backwards. Click the asterisk within the

parentheses next to the stats node.

2. Notice how the Properties box looks very similar to the Explore View. Click the down-arrow to
open the drop-down menu. Select info and click send. Notice how the Ouput displays stats/.

Just above the Output box notice that the REST API URL builder has built the appropriate URI for a

call to the stats node and that the message is info and then the content is forced to plain text and

that it will time out in 600 seconds.

3. Select this entire string (this URL), right-click, and click Copy.
4. Navigate to the Address box for this same browser window (where it currently displays

10.101.240.39:50104/database and append the URI that you just copied by pasting it to
the end of the existing URL. Eliminate any redundancy (such as the /database).
Now it should read as follows:

10.101.240.39:50104/database/stats?msg=info&force-content-

type=text/plain&expiry=600

5. Press the Enter button. This is your second REST call. In this query, you asked the Packet Decoder

entitled PacketDecoder to return info to you about the database/stats path. The returned value

should say stats/.

6. Go back by clicking the left arrow button on the browser. It should display the nodes entitled config

and stats.

7. Click the asterisk next to stats.
8. With the ls or “list” method already selected from the drop-down arrow, click the Send button. All

the parameters for this node are listed in the Output box.

January 16, 2017 [<RSA ELAB TITLE>]

8 RSA NetWitness REST API Lab Guide | RSA NetWitness Using the REST API

9. In the Output box, scroll down until you find the parameter entitled
packet.oldest.file.time

10. Now, in the URL builder box where it says the following:

/database/stats?msg=ls&force-content-type=text/plain&expiry=600

11. Edit the URL by changing the path from /database/stats
To the following:

 /database/stats/packet.oldest.file.time

The path now points to that parameter.

12. Next alter the URL string from a ?msg=ls

to ?msg=get (be sure to leave the question mark in place)

13. Copy the entire URL by right-clicking and selecting Copy (Ctl-C will likely not work)

14. Navigate to the Address bar of the browser, with /database selected, just after the port number,
right-click and select Paste. The URL should look like this:

10.101.240.39:50104/database/stats/packet.oldest.file.time?msg=get&force-

content-type=text/plain&expiry=600

15. Press the Enter button.
This is the date/time of the oldest packet on that particular Packet Decoder (Remember, we

have three of them in this environment)

Write down that date/time here _________________ .

HELPFUL HINT: It may come in handy – especially during a later exercise (Exercise 7 and beyond within the

Linux Red Hat Workstation) – to know that Skytap copy and pasting can be somewhat difficult (right click

and Copy tends to work where Ctl-C does not). Skytap itself has a Clipboard/buffer what can temporarily

store text but this only works if you do it twice (copy into the Clipboard, copy out of the Clipboard – then

do that same procedure AGAIN)

RSA NetWitness Using the REST API January 16, 2017

9 RSA NetWitness REST API Lab Guide | RSA NetWitness Using the REST API

Exercise 5: Manipulate the URL to change the packet decoder and change the output

Objectives:

 Change your REST call to access metrics on a different appliance (but of the same type)

 Manipulate the URL string so that the Web Service sends an output in a different format

Goal: Become familiar with the hierarchy of REST information and ways to access it

1. In the browser URL, change the IP address to the Packet Decoder entitled packetdecoder2 which
has an IP Address of 10.101.240.29 Next press Enter. Provide that web service with your
default REST credentials (admin/netwitness). This is the time of the oldest packet on that Packet
Decoder.
Make a note of this date/time here _________________ .

2. Now change it to Packetdecoder3 – Linux(10.101.240.19). Enter your creds and
press Enter and view the returned information.
Make a note of this date/time here _________________ .

3. Now change the output from plain/text to application/json (JavaScript Object Notation). In the

URL, just replace text/plain with application/json. Press Enter

Notice that the web service on that Packet Decoder has returned a format that would be suitable

for an application written in JavaScript.

4. Change the output from application/json to text/xml. Press Enter.

Similarly, the output is now in xml.

5. So far, you have used the visual Graphic User Interface (a browser) of the REST API. As you saw, in
the tutorial example, there were three different values for the oldest packet time. What would
happen if you needed to get these values updated for every Packet Decoder every week? Instead
of bookmarking so many decoders, it might make better sense to have a script that does it for you
and populates a report.
Before you navigate to a Linux workstation to write such a script, first do the following:

Now edit your REST API call in the Address box so that the URL is just the IP Address and the port

number for the Packet Decoder entitled PacketDecoder -10.101.240.39:50104

6. Navigate the tree and its nodes to the path/parameter of decoder/stats/capture.rate

What is the current capture rate? ______ . You will work with this same parameter in an

upcoming exercise.

That concludes this exercise.

January 16, 2017 [<RSA ELAB TITLE>]

10 RSA NetWitness REST API Lab Guide | RSA NetWitness Using the REST API

Exercise 6: Use the URL string in a Command Line Interface with curl

Objectives:

 Work with REST using a Command Line Interface (CLI)

 Make a REST call using curl

 View the results that the appliance’s Web Service sends back to you

Goal: Become familiar with accessing REST in a non-GUI-based way

For this exercise, you will be using a different workstation. Instead of the jumphost (Windows 2008

machine), you will navigate over to the Red Hat Enterprise Linux box.

HINT: Troubleshooting – if your environment auto-suspends after 30 minutes of inactivity (again just click

your browser’s Refresh and then click the Global Play button), AND if you get an error of the network

being down (eth0 down), just click System->Administration->Network, select eth0 and click ‘Activate.’

1. Using the Skytap tool bar, click on the left-most icon to view all the machines in the environment.

Click View all VMs (14) and scroll down if needed, and click on the Red Hat Linux box.

WARNING: WAIT 1-2 Minutes for it to fully boot! The screen will change from red to blue.

(if you are on a Windows machine and need to shrink it, just press Ctl and the - key).

Log in using the following credentials: root/Adm1npass! After logging in, click the Refresh button

for the browser to make the Skytap button-set appear, then expand the screen by clicking the icon

shown circled in the graphic below in the Skytap menu.

Navigate to the following location on your Redhat workstation’s Desktop: ClassroomFiles and then

open myLabEnvironmentAndCommands.txt by right-clicking it and open it by clicking the “Emacs

Text Editor” option.

2. curl is an http utility that enables Unix and Windows users (who have added it to their Windows
environment) to communicate over http. In this case, at your Red Hat workstation, you will open a
Command Line Interface and use curl to “get” information from a Packet Decoder located at a
different IP Address using the curl command. You will supply a URL or REST call to curl and the
Packet Decoder will return a value to your command line screen. In other words, the very same
URL that you used in the browser earlier in the lab, you will now supply to curl.
Open the CLI by clicking Applications on the menubar. Then hover over Accessories and click the

Terminal option to open a command window.

3. Type the following command exactly with no carriage returns (Unix is case-sensitive):

RSA NetWitness Using the REST API January 16, 2017

11 RSA NetWitness REST API Lab Guide | RSA NetWitness Using the REST API

curl -u admin:netwitness

"http://10.101.240.39:50104/decoder/stats/capture.rate?msg=get&force-

content-type=text/plain&expiry=600"

HINT: Copy/Past/Edit by opening the Classroom Files folder on the Desktop, right-click the file

entitled “myLabEnvironmentAndCommands.txt,” and open with “Emacs txt Editor” to view all the

code, default REST ports, IPs of the machines in your environment, and more. To copy/paste/edit

syntax/code be aware that Skytap/Linux will require you to right-click Copy from the selected text

in the editor then, in the Command window, right-click and paste. Also be aware that the code that

you have selected and pasted may refer to a different IP, REST port, path etc. than what *you* are

trying to query. Again, you can try using the Skytap Clipboard icon (but remember to copy/paste

twice!)

(Note: there is a space between the word netwitness and double quotation marks for the http

URL).

4. Next press Enter. Type the username/password of admin/netwitness and Press Enter.
The expected result is 0.

You have now made a REST “get” call to the Packet Decoder and specified that you wanted the

result to print to screen in plain text using a Terminal or Command Line without the use of a

browser. Although you have successfully extracted a value, you have not saved it anywhere.

That concludes this exercise.

January 16, 2017 [<RSA ELAB TITLE>]

12 RSA NetWitness REST API Lab Guide | RSA NetWitness Using the REST API

Exercise 7: Write a script that uses curl and saves the output to a file on disk

Objectives:

 Programmatically make a REST call and save the plain text outputted value to disk.

 Trap the returned values (not just displaying output in a GUI or on the CLI window)

Goal: Edit curl script text file (instead of using the Unix text editor entitled vi) to make changes to a REST
query and then run that script from the command line and then view the resulting output that has been
saved to a file on your Red Hat workstation’s disk.

Review the curl script entitled myCurlScript.sh.txt in the ClassroomFiles folder on the Red Hat Desktop.

In this exercise, your goal is to change the script so that it will “get” the Concentrator’s Meta bytes volume

for the last hour (meta.bytes.last.hour) and put that value into a text file entitled decoderOutput.txt and

then to couple that value with today’s date (from the Red Hat system).

Edit the scripts URL string to reflect the information that you are looking for. The meta.bytes.last.hour

parameter can be found on the appliance type of Concentrator (see your lab guide for the IP Address of

the Packet Concentrator). Concentrators have an appliance specific port of 50105. The node that contains

that parameter and value is the database/stats node.

1. Open a file called myCurlScript.sh.txt found on the Desktop in the ClassroomFiles folder, change a
line of code within it, and then save it back down with the same file name in order to overwrite the
initial string of code that it contained.

2. Adjust the script to “get” the parameter that you want and then save it (as the same name
myCurlScript.sh.txt)

3. Open the CLI terminal window again.

4. Type ls -l

5. Type cd Desktop/

6. Type cd ClassroomFiles

7. Type ls -l

The first thing to note is that the sample scripts and files have a .txt appended to the end of the files and

this will have to be removed for them to be able to run.

We cannot execute these files right now because they are only read/write. Do a few things to make them

executable and then validate that they can run.

Solution:

“http://10.101.240.45:50105/database/stats/meta.bytes.last.hour?msg=get&force-

content-type=text/plain&expiry=600”

RSA NetWitness Using the REST API January 16, 2017

13 RSA NetWitness REST API Lab Guide | RSA NetWitness Using the REST API

8. In the CLI, copy the curl script to one with a .sh extension by doing the following:
Type cp myCurlScript.sh.txt myCurlScript.sh

(If the system asks you “overwrite existing file”?, Type an answer of y for “yes”).
Now you can see that you have two versions of that file.

You have the myCurlScript.sh.txt which you can easily edit in the “Emacs” tool. It is a simple text

editor found on your Red Hat Desktop) to make a “template” or “known good copy”

Then you can come back to the Command Line and change the mode or ability to execute the file
with the .sh extension, that you will run a little later.

9. Now change the mode on the myCurlScript.sh file to executable.

Type chmod +x myCurlScript.sh

10. Type ls -l to do a long listing of the files
Notice that the file is now executable (-rwxr-xr-x)

11. Run the current file.
Type ./myCurlScript.sh

The unix results of running the .sh file are returned and give you the number of bytes received and

the entire curl transaction.

12. Type ls -l to list the files in this directory and notice the decoderOutput.txt file. This is the one that
the myCurlScript.sh script wrote the results to. In other words, the results of the REST query have
been written to the file decoderOutput.txt.

13. Cat that file to see its contents by typing the following:

cat decoderOutput.txt

 And press Enter

The expected value of this Concentrator’s meta.bytes.last.hour is the last entry in the decoderOutput.txt

file for this metric. It is an ever-changing numeric value that may be five digits.

If you run the .sh again and cat the decoderOutput.txt, you will see two entries because the script tells it to

append results to the end. So the expected result would be the first date and time and your metric and

then the next date and time and your metric again.

 (Solution: The URL that your script should have is shown below:)

http://10.101.240.45:50105/database/stats/meta.bytes.last.hour

That concludes this exercise. 49039

January 16, 2017 [<RSA ELAB TITLE>]

14 RSA NetWitness REST API Lab Guide | RSA NetWitness Using the REST API

Exercise 8: Write a simple Python script that pulls IPs from a .csv file

Objectives:

 Automate the process of making a REST call from within a Python script that would then allow you
to manipulate the returned values with further calculations

 Write a .csv file that contains the IPs of all the Packet Decoders in the environment (You would
normally write a Python script for each appliance type and a corresponding .csv for it)

Goal: Work with a Python script that makes a REST call. Write a .csv that will supply the IPs to the Python

script. Run the script and note the returned values. 1. Create a .csv file. 2. Edit the script to make a simple

REST call, 3. Save it down 4. Go to the CLI and convert it to .sh, enable it as an executable, 5. Run it and

make note of the returned values.

Use a simple Python script (Overview)

1. Go to the Desktop of your Red Hat box, open the folder entitled ClassroomFiles.
2. Next, double-click the file rest_script.py.txt. Do not open the file that ends with .py but instead

open the one that ends with .txt. Within the “Emacs” text editor, review the script.
3. The dialog asks to ‘Run’ or ‘Display’ -> Choose ‘Display’

Even if you don’t know Python, you can see that, when you save it down it will be stored in this Red

Hat’s binary directory. The script itself, imports the Python modules needed to work with URL

requests. It then defines a variable that takes some parameters and prints any returned results to

the command line interface. In the “main” logic, it defines some variables that correspond to a

username and password. Recall that REST has a default username and password that you can

supply at runtime. Normally, you would not want these hard coded into any script. For tutorial

simplicity the script does however, contain them. The script then “includes” IPs that will be

supplied to it from a Comma Separated Values file as an input to the script. Finally, it runs a “for”

loop that contains the port number for a Packet Decoder, in this case, and a REST call. The REST

call is a “get” call not a “set” call and, in this case, pulls the parameter entitled capture.received in

plain text from whatever Packet Decoders you specify in the .csv file.

In other words, it will do a “get” call on all of the Packet Decoders and will return a value for each.

In order for your script to work, you will need to create a .csv file that houses all the IP Addresses of

the Packet Decoders, in this case.

Task I: Create a CSV file with all the IP Addresses of all of the Packet Decoders (in this case).

As long as the .csv file has the devices that correlate with the appliance-type port that is in your query,

then it will work. Thus, if you are looking for meta from Concentrators, then the port number will need to

be the REST port number for Concentrators, and the IPs in the .csv file will need to be IPs of the

RSA NetWitness Using the REST API January 16, 2017

15 RSA NetWitness REST API Lab Guide | RSA NetWitness Using the REST API

Concentrators in the environment. If one of the IPs in the .csv file is NOT a Concentrator the script will still

run but will return a “does not exist” and will then move on. It won’t break anything but it is not ideal.

The name of your Python script is rest_script.py and, from a naming convention stand-point in the field, it

would normally be good to keep things “clean” by having .csv files and python scripts distinctly named and

populated based on the appliance type. Brokers IPs would go in a myBroker.csv and would be included in

a myBroker.py script and so on.

For this tutorial though, just keep the file names as they are. Thus you will have mydevices.csv and

rest_script.py.

1. In the ClassroomFiles folder, open the mydevice.csv file. Type in a list of the appliances’ IP
Addresses. For this task it will be three Packet Decoders. In this case, since we want to get the
oldest packet time from all of the Packet Decoders in our environment, type the following:

Type each IP and then press Enter to start the next IP on its own line (this is how Unix will
understand the delimiting of the IPs – with a Line Return not a comma)

10.101.240.39

10.101.240.29

10.101.240.19

These IPs represent the packet decoders entitled PacketDecoder, packetdecoder2, and
Packetdecoder3 respectively.

2. Click the Save button to save your .csv.

3. Go back to your CLI and type ls -l to confirm that your file is listed.

Your mydevices.csv is now going to be an input into the a python script that you created entitled
rest_script.py

However, instead of “getting” the capture.received value for each Packet Decoder, your goal is to
get the current amount of uptime that each Packet Decoder has been running. For this you will
need to “get” the /sys/stats/uptime value.

Task II: Edit the rest_script.py.txt script

1. Change the REST call by editing the URL string. Change it from

/decoder/stats/capture.received to
/sys/stats/uptime.

After you run this Python script, the returned results will tell you how long each of the Packet

Decoders (whose IPs you have specified in the .csv file) have been running.

January 16, 2017 [<RSA ELAB TITLE>]

16 RSA NetWitness REST API Lab Guide | RSA NetWitness Using the REST API

2. Save this text file. Click File ->Save.

3. Open the Command Line terminal.

4. Do an ls -l to make sure that you can see your file called rest_script.py.txt.

5. Change it from a .txt to a .py file extension.
Type cp rest_script.py.txt rest_script.py

(If the system asks you “overwrite existing file”?, Type an answer of y for “yes”).

6. Do an ls -l and see that you have two versions of that file.

If it isn’t already enabled as an executable, change the mode on the rest_script.py file to

executable.

7. Type chmod +x rest_script.py

8. Type ls -l to do a long listing of the files

Notice that the file is now executable (-rwxr-xr-x)

9. Run the current file.
Type ./rest_script.py

10. Type a username of admin and press Enter

11. Type a password of netwitness and press Enter

Notice that those three Packet Decoders returned the expected results in which you can see the

uptime of each of those core appliances.

It should look something like this within your Console window:

9905, 2 hours 45 minutes 5 seconds

76529,21 hours 15 minutes 29 seconds

76512,21 hours 15 minutes 12 seconds

That concludes this exercise.

RSA NetWitness Using the REST API January 16, 2017

17 RSA NetWitness REST API Lab Guide | RSA NetWitness Using the REST API

Exercise 9: Write a Python script that pulls the oldest packet time from every Packet

Decoder, does a calculation, and provides you with the retention duration for each one.

Objectives:

 Perform additional logic on values (within the script) that have been pulled programmatically from
NetWitness

 Automate the process of making a REST call from within a Python script

 Write a .csv file that contains the IPs of all the Packet Decoders in the environment

Goal: Fulfil management’s need to know how long packets are being retained by the organization across

the enterprise. Work with a Python script that makes a REST call, performs a calculation, and returns the

answers to your business question. Specifically, pull the oldest packet time from each Packet Decoder,

convert each to a number of days that the oldest packet has been retained and thus be able provide the

duration for all Packet Decoders whenever you run the script.

Within this case-based scenario, Your Manager, at XYZ Corporation, has asked you to identify the oldest

packet times on all Packet Decoders in the enterprise and needs the results in order to ensure that they

are being retained for a required minimum of 4 weeks. You have decided to write a Python script that will

get the results for you.

You already know that the parameter entitled packet.oldest.file.time will yield the values that you are

interested in extracting from NetWitness and that it is located on every Packet Decoder under the

/database/stats node.

1. On the Desktop of your Red Hat box, open the folder entitled ClassroomFiles. Next, double-click
the file entitled rest_packet-retention.py.txt (not the file that ends with .py) to open it in the
“Emac” text editor.

The rest_packet_retention.py.txt script is very much like the Python script that you worked with in a

previous exercise except this one does some calculation to take a date/timestamp and calculate the

difference between it and the Red Hat system’s current date/time. Thus it is yielding the duration.

(system timestamp – oldest packet timestamp = duration) In other words, Raw retention of packets for

one of the Packet Decoders is 50 days 20:40:02, for example.

2. Change the URL string in the script to the correct path/parameter. This should result in a standard
REST “get” query from within a Python script (That could later be modified to write to a file,
spreadsheet, third-party application, etc).

3. Go to your Command Line Interface and copy your rest_packet_retention.py.txt over to your
rest_packet_retention.py

January 16, 2017 [<RSA ELAB TITLE>]

18 RSA NetWitness REST API Lab Guide | RSA NetWitness Using the REST API

4. If the system asks you if you want to overwrite? Answer y for “yes” and press Enter

5. Do an ls -l if you wish and a chmod if needed

chmod +x rest_packet_retention.py

6. Run your Python script.

How long are your packets being retained on all of your Packet Decoders?

Your results should look something like the following:

 Host 10.101.240.39 Packet Oldest time: 2016-10-24 17:10:49 Raw Retention 50 days, 20:40:02

 Host 10.101.240.29 Packet Oldest time: 2016-12-07 17:10:49 Raw Retention 6 days, 17:40:4

 Host 10.101.240.19 Packet Oldest time: 2016-12-07 20:52:00 Raw Retention 6 days, 16:58:5

Congratulations, you have just programmatically extracted data from NetWitness to solve a business

problem! You’ve ensured that this platform is meeting your organization’s security requirements. And,

you have created a repeatable process that can now be performed again at any time by just running your

script!

That completes this exercise.

.

RSA NetWitness Using the REST API January 16, 2017

19 RSA NetWitness REST API Lab Guide | RSA NetWitness Using the REST API

Exercise 10: Research metrics that exist within NetWitness from the REST GUI

Objectives:

 Identify a repeatable and easy way to sift through nodes, sub-nodes, and parameters in order to
identify the single parameter in which you may be interested

 Work with the depth property

 Be able to perform a data dump of all parameters of all nodes of all devices

Goal: Use the REST Properties box (Right-click on a Node’s asterisk), use the List method and Depth

property to view the output which lists all devices, nodes, sub-nodes, and parameters in NetWitness.

Now that you have used various methods of accessing metrics within NetWitness, you may want a way to

find what those metrics are and where they are located without having to endlessly poke around in the

Explore View within the GUI.

1. From within your Red Hat workstation, Click Applications ->Internet ->Firefox to open a browser.
In the URL Address box, navigate to the Packet Decoder at the IP Address; 10.101.240.39 with a REST port

of 50104

2. Enter the default credentials and press Enter.

3. Click the asterisk next to the node entitled database (to go into the Properties)

4. Every REST node has a “depth” command. Click the Properties drop-down arrow. In the drop-down
menu, select ls as the message. In the Parameters box type depth=5 and press the Send button.
The Output box displays all of the path/parameters for the database node.

5. To make it more human readable, select the entire URL from the URL builder (between the
Message Help box and the Output box) and copy it (Right click ->copy)

6. Now paste (Right-click ->Paste) the URL into the browser’s Address box and press Enter. Be careful
to not set a double slash between the port number and the word database!

You can see an organized list of all the sub-nodes for database grouped together and for each, you

can see all the parameters. This way you can more easily sift through and find the parameter that

you are interested in without having to click up and down node structures and through sub-nodes

while hunting for one.

That completes this exercise and the lab. Feel free for “extra credit” to have the rest_packet-

retention.py.txt script write the results to a file, or for greater accuracy, use REST to pull and correlate the

timestamp of the appliance with its parameter value. If you enjoyed this On-Demand lab and eLearning,

please take a few moments to complete the course survey for “RSA NetWitness Using the REST API” back

in the eLearning browser. Hope you learned a lot about the possibilities of using the REST API.

